Year 6			Western Adelaide Region - Maths Assessment Tasks Map (Draft-November 2013)					Proficiency Strands
Aims	The Australian Curriculum Mathematics aims to ensure that students......are confident, creative users and communicators of mathematics, able to investigate, represent and interpret situations in their personal and work lives and as active citizens; develop an increasingly sophisticated understanding of mathematical concepts and fluency with processes, and are able to pose and solve problems and reason in Number and Algebra, Measurement and Geometry, and Statistics and Probability; recognise connections between the areas of mathematics and other disciplines and appreciate mathematics as an accessible and enjoyable discipline to study.							- Understanding - Fluency - Problem Solving - Reasoning
Content Strands	Number \& Algebra							
Sub Strands	Number \& Place Value			Fractions and Decimals			Money and Financial Mathematics	Patterns \& Algebra
	Additive to Multiplicative Thinking			Partitioning			-Discounts can be efficiently and mentally calculated by drawing on knowledge of place value, fractions and decimals -Creating budgeting plans assists in achieving financial goals	-A pattern requires an element of repetition that can be described and generalised with a pattern rule -Patterns can be represented in many ways and can consist of multiple operations and inverse operations
Big Idea/ Concept/ Key Understanding	-Numbers have special properties that can be used to solve problems (e.g. factor, multiple, prime) -If a number is divisible by a composite number then it is also divisible by the prime factors of that number (e.g. 216 is divisible by 8 because the number represented by the last 3 digits is divisible by 8 , and therefore is also divisible by 2 and 4) -An integer is any whole number that is positive, negative or zero			-The decimal numeral system has 10 as the base. A decimal is a tenth part. -Decimals are multiplied and divided using powers of 10 -A decimal fraction is a fraction whose denominator is a power of ten (e.g. 6 tenths, 6 hundredths, 6 thousandths, etc.)	-The denominator of a fraction names the part. The numerator tells their number -- how many -A unit fraction is a fraction whose numerator is 1 (e.g. $1 / 3$: in $2 / 3$ the unit is $1 / 3$ and we have 2 of them) -Representations of quantities can be expressed as decimals, fractions and percentage -Drawing representations of fractions can assist when comparing fractions with like and unlike denominators -An integer is any whole number that is positive, negative or zero			
Australian Curriculum Content Descriptor	Identify and describe properties of prime, composite, square and triangular numbers	Investigate everyday situations that use integers Locate and represent these numbers on a number line	Select and apply efficient mental and written strategies and appropriate digital technologies to solve problems involving all four operations with whole numbers	Add and subtract decimals, with and without digital technologies, and use estimation and rounding to check the reasonableness of answers Multiply decimals by whole numbers and perform divisions by non-zero whole numbers where the results are terminating decimals, with and without digital technologies Multiply and divide decimals by powers of 10	Make connections between equivalent fractions, decimals and percentages Solve problems involving addition and subtraction of fractions with the same or related denominators	Find a simple fraction of a quantity where the result is a whole number, with and without digital technologies Compare fractions with related denominators and locate and represent them on a number line	Investigate and calculate percentage discounts of 10\%, 25% and 50% on sale items, with and without digital technologies	Continue and create sequences involving whole numbers, fractions and decimals. Describe the rule used to create the sequence Explore the use of brackets and order of operations to write number sentences
Achievement Standard	Students recognise the properties of prime, composite, square and triangular numbers	Students describe the use of integers in everyday contexts	Students solve problems involving all four operations with whole numbers	Students make connections between the powers of 10 and the multiplication and division of decimals Students add, subtract and multiply decimals and divide decimals where the result is rational	Students connect fractions, decimals and percentages as different representations of the same number. Students solve problems involving the addition and subtraction of related fractions	Students calculate a simple fraction of a quantity Students locate fractions and integers on a number line	Students calculate common percentage discounts on sale items	Students describe rules used in sequences involving whole numbers, fractions and decimals Students write correct number sentences using brackets and order of operations
Summative Assessment Task		6.1 Best Burgers			6.2 Sports Field	6.3 Brownies		6.4 Target Number

Developed by Karly Hefferan, Chris Miethke, Susan Glaister, Karen Knox, Lauren Fletcher-Rees \& Dawn Dyer

6.1 - Number \& Place Value

Year 6

Big Idea(s)

-Numbers have special properties that can be used to solve problems (e.g. factor, multiple, prime).
-An integer is any whole number that is positive, negative or zero.

Prior Learning Experiences

Do I use ongoing Formative Assessment to inform the teaching \& learning cycle? Do I provide learning experiences that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before administrating the assessment task.
Developing:
Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Mental routines involving the 4 operations
- Fluency and automaticity of basic number facts exploring different strategies (not rote learning)
- Exploring a range of strategies involving the 4 operations (e.g. chunking, partial algorithms, open number lines, lattice and area models for multiplication, partitioning for division, formal operations- last)
- Reflection to discuss and share efficient strategies for problem solving with the 4 operations
- Problem Solving situations involving the 4 operations, including multi-step problems
- A range of experiences with addition, subtraction, multiplication and division strategies, using both mental and written computation
- Locating and highlighting the relevant information and facts in worded problems
- Vocabulary development of key terminology
- Using estimation and approximation before solving a problem as a strategy
- Locating and ordering integers (positive and negative) on a number line
- Place value of larger numbers, including ordering and sequencing on open number lines

Australian Curriculum Content Descriptor Investigate everyday situations that use integers. Locate and represent these numbers on a number line.

Achievement Standard

By the end of Year 6, students describe the use of integers in everyday contexts.

Related Mathematical Proficiencies

- Understanding includes describing properties of different sets of numbers
- Fluency includes representing integers on a number line

Feedback	
How will I provide feedback to students?	D tha E

Summative Assessment

Does the assessment task indicate how well students understand and can apply their learning? (how well = extent, depth and sophistication of thinking - informs AE grading)

Best Burgers (see attachment 6.1)

Entry Level

The Best Burger shop pays its staff weekly wages. Best Burger is a small business and it employs 4 people. Every week the 2 cooks work 35 hours each for $\$ 20$ an hour and the 2 waiters work 30 hours each week for $\$ 15$ an hour. How much altogether does Best Burgers pay its 4 employees each week?

Conferences

1:1 with peers \& teacher

Learning log:
Student
identifies areas
for focus

SNW (S-
strengths, N needing improvement, W- where to next)

Stars/smiley
faces

Challenge Leve

1. How much more money does a cook earn than a waiter per week?
2. Jane, one of the cooks, is saving to buy a car valued at $\$ 4500$. She has already saved $\$ 750$. How much more money does she need?
3. Jane plans to save $\$ 200$ per week. How long will it take her to save the rest of the money needed to buy the car?
4. How could you represent how long it will take Jane to buy the car using a number line?
Explain how you worked out your answers.

Questioning - "Which operations did you use to help you solve the problem?" "How can you check your answers?" "How could using estimation help you solve the problem?" "Is there a more efficient strategy you could have used?" "Could you write a similar problem of your own?"

Organisation

Teacher - Provide students with problem page (see attachment 6.1); explain any unfamiliar terms (e.g. wages)
Students - Best Burgers problem (attachment 6.1); pencil/pen

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by successfully using efficient strategies to solve the given problem.
- Show understanding by explaining strategies used and applying their knowledge to solve more complex questions.

Advanced - Students demonstrate appropriate and efficient strategies to accurately calculate the earnings of the staff in the given problem. They are able to identify money required to purchase an item and the length of time this would take. They represent stages in savings using a number line. They clearly explain strategies used and justify their answers using mathematical reasoning.

Competent - Students accurately calculate wages paid to all employees and explain their thinking using mathematical language. They use efficient strategies to solve the problem. They attempt to solve the challenge level problems with some success.

Developing - Students demonstrate some/little understanding in calculating the total wages of employees. They require support to attempt to solve the task. Some/little mathematical thinking is evident.

Solutions

Entry Level: $\$ 1400$ Cooks $\$ 900$ Waiters $\$ 2300$ Total
Challenge Level:

1) $\$ 250$ per week more
2) $\$ 3750$ left to pay
3) 18 weeks (including final payment of $\$ 150$)

Big Idea(s)

-Representations of quantities can be expressed as decimals, fractions and percentage.
-Drawing representations of fractions can assist when comparing fractions with like and unlike denominators.

Achievement Standard

 By the end of Year 6, students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions.Related Mathematical Proficiencies

- Understanding includes representing fractions and decimals in various ways and describing connections between them
- Fluency includes using operations with fractions, decimals \& percentages
- Problem Solving includes formulating and solving authentic problems using fractions, decimals and percentages

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by accurately representing percentages of a whole in a given word problem.
- Show understanding by accurately converting percentages to fractions and decimals and using this knowledge to solve given problems.

Advanced -Students demonstrate understanding of percentage by converting percentages to decimals and fractions. They explain how they solved their problem using mathematical terms. They successfully calculate the seating area as $1 / 16$ of the whole field, showing their working out and explaining their thinking. They accurately calculate $5 / 10$ of the time used by year $6 / 7$ students (may convert $5 / 10$ to $1 / 2$). They suggest other ways of sharing the time. They provide reasonable explanations for their choices.

Competent -Students demonstrate an understanding of percentages, fractions and decimals by successfully completing the entry level task. They explain how they solved the problem using mathematical language. They attempt the challenge activities with some success.

Developing -Students demonstrate some/little understanding of converting percentages to fractions and decimals. They attempt to divide the playing field using the given percentages.

Big Idea(s)

-Representations of quantities can be expressed as decimals, fractions and percentage.
-Drawing representations of fractions can assist when comparing fractions with like and unlike denominators. -An integer is any whole number that is positive, negative or zero.

Prior Learning Experiences

Do I use ongoing Formative Assessment to inform the teaching \& learning cycle? Do I provide leaming experiences that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before administrating the assessment task.

Developing:
Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Modelling and exploring halves, quarters, thirds, fifths, eights, tenths, etc.
- Make, name and record fractions, including mixed numbers and improper fractions
- Counting by halves and thirds, including mixed numbers
- Representing fractions using fractions thinkboards (e.g. the answer is $1^{1 / 4}$)
- Investigating equivalent fractions
- Problem solving situations and rich tasks involving finding unknown fractions, explaining fractions, comparing fractions
- Patterning - adding and subtracting fractions
- Exploring fractions in real-world contexts - (e.g. fractions of a quantity-sharing lollies)
- Locating and recording common fractions on a number line $0-1$, then on an open number line
- Place value to tenths and hundredths
- Fractions games - e.g. make a whole (Professor Dianne Siemon)

Australian Curriculum Content Descriptor

Find a simple fraction of a quantity where the result is a whole number, with and without digital technologies.
Compare fractions with related denominators and locate and represent them on a number line.

Achievement Standard

 By the end of Year 6, students calculate a simple fraction of a quantity. They locate fractions and integers on a number line.
Feedback

How will I provide feedback to students?

Teacher observations

Conferences
$1: 1$ with peers \&
teacher

Learning log: Student identifies areas for focus

SNW (Sstrengths, N needing improvement, W - where to next)

Stars/smiley faces

Summative Assessment

Does the assessment task indicate how well students understand and can apply their learning? (how well $=$ extent, depth and sophistication of thinking - informs $A-E$ grading)

Chocolate Brownies (attachment 6.3)

Entry Level

Marlene's friends were coming for morning tea. They asked if she could make her famous chocolate brownies. She knew two of her friends were on a diet so she wanted to cut down on the sugar in the recipe so all of her friends could enjoy them. She decided to only use $2 / 3$ of the amount of sugar mentioned in the recipe. How much sugar will she need?

Chocolate Brownies (makes 12)
250 g butter
2 cups brown sugar
3 eggs
$1 / 3$ cup cocoa powder
$21 / 2$ cups flour
$1 / 4$ cup chopped walnuts
$11 / 2$ tspn vanilla

Challenge Level

What if Marlene wanted to make 36 of her diet brownies for morning tea so her friends could each take some home with them? How much of each ingredient would be needed?

Questioning - "How did you calculate $2 / 3$ of a quantity?" "What strategies did you use?" "How did your knowledge of fractions help you to solve the problem?" "Could you represent the solution in a different way?" "What strategies did you use to calculate multiple amounts of the recipe?"

Organisation

Teacher - copies of attachment 6.3 or alternatively display the task on the board; paper for folding and fractions bars for students to use if they choose Students - attachment 6.3 (optional); recording paper; whiteboards

Related Mathematical Proficiencies

- Fluency includes converting between fractions and decimals and using operations with fractions, decimals \& percentages
- Problem Solving includes formulating and solving authentic problems using fractions, decimals and percentages

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by calculating a simple fraction of a quantity.
- Show understanding by multiplying fractions to find a larger quantity required.

Advanced -Students demonstrate an

 understanding of fractions of a quantity by accurately identifying the amounts required when reducing and increasing ingredients in a recipe.Competent-Students demonstrate an understanding of fractions of a quantity. They model and explain their thinking using mathematical terms and fractional diagrams. They may solve or attempt to solve a problem involving multiplying fractions.

Developing -Students demonstrate some/little understanding of fractions of a quantity and are unable to find an accurate solution to the problem. They attempt to use diagrams and symbols when problem solving. They are able to draw a diagram showing $1 / 3$, then $2 / 3$ when directed to.

Australian Curriculum Content Descriptor

 Continue and create sequences involving whole numbers, fractions and decimals. Describe the rule used to create the sequence.Explore the use of brackets and order of operations to write number sentences.

Achievement Standard

By the end of Year 6, students describe rules used in sequences involving whole numbers, fractions and decimals. They write correct number sentences using brackets and order of operations.

Related Mathematical Proficiencies

- Understanding includes representing fractions and decimals in various ways
- Fluency includes using brackets appropriately
- Reasoning includes describing results for continuing number sequences

Prior Learning Experiences
Do I use ongoing Formative Assessment to inform the
teaching \& learning cycle? Do I provide learning experiences
that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before

 administrating the assessment task.
Developing:

Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Number patterns

- Unknown number sentences
- Addition, subtraction, multiplication and division
- Multiples and factors
- Problem solving involving the 4 operations
- Landmark numbers $(25,50,75,100)$
- Using calculators
- Explore number patterns \& revisit efficient strategies for mental computation
- Problem solving situations \& investigations involving multistep and combinations of the four operations
- Explore how to use a calculator to assist with order of operations
- Practise recording number sentences as multi-step solutions (over a number of lines) to show working out \& strategies used
- Explore formulas in Excel using brackets

BEDMAS

1. Calculations must be done from left to right.
2. Calculations in brackets (parenthesis) are done first. When you have more than one set of brackets, do the inner brackets first.
3. Exponents/Orders (or radicals) must be done next.
4. Multiply and divide in the order the operations occur.
5. Add and subtract in the order the operations occur.

Feedback

How will I provide
feedback to students?

Teacher

 observations
Conferences

1:1 with peers \&
teacher

Learning log:
Student
identifies areas
for focus

SNW (S-
strengths, N needing improvement, W- where to next)

Stars/smiley

 faces
Summative Assessment

Does the assessment task indicate how well students understand and can apply
their learning? (how well = extent, depth and sophistication of thinking - informs AE grading)

Target Number (Calculator Task)

Entry Level

Your challenge is to get to the target number of 300 , or as close to 300 as you can get using the numbers $3,4,9,25,75$ and 100 . You need to use at least 3 different operations ($+,-, x, \div$).
You can use a calculator, however you need to record your thinking.

Challenge Level

Is there another way?
What if you didn't need to use all the numbers?
What if you needed to use each operation at least once?
What is the highest number you can make with all 6 digits? What is the smallest number you can make?

Questioning - "What strategies did you use?" "Is there another way?" "What did you find challenging? Easy?" "Are there any patterns?" "If you could choose 6 numbers what would you choose and why?"

Organisation

Teacher - record the 6 digits on the board and each operation to be used; calculators 1 per student
Students - working out paper; calculator; eraser; pencil

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by describing appropriate strategies for problem solving.
- Show understanding by recording number sentences using order of operations.

Advanced -Students demonstrate multiple ways of solving the problem. They use brackets to demonstrate an understanding of order of operations. They demonstrate deep knowledge of multiplying using landmark numbers and identifying patterns. They use each of the four operations and explain any rules and patterns used to solve the task.

Competent -Students demonstrate multiple attempts at solving the problem, moving closer to finding a solution with each attempt. They identify a strategy and show understanding of landmark numbers. They explain their strategies using mathematical thinking.

Developing -Students demonstrate some/little understanding of the problem. They are unable to independently identify strategies that will assist in finding a solution.

POSSIBLE SOLUTION:

Competent- $(9 \times 25)+100-75=300$
Advanced- (9×25) $+100-75 \div 1=300$

Attachment 6.1 - Best Burgers

The Problem
The Best Burger shop employs 4 people. The 2 cooks work 35 hours each per week for $\$ 20$ an hour. The 2 waiters work 30 hours each week for $\$ 15$ an hour.

How much altogether does Best Burgers pay its 4 employees each week?
Challenge

1. How much more money does a cook earn than a waiter per week?
2. Jane, one of the cooks, is saving to buy a car valued at $\$ 4500$. She has already saved $\$ 750$. How much more money does she need? Jane plans to save $\$ 200$ per week. How long will it take her to save the rest of the money needed to buy the car?

Explain how you worked out your answers.

The Problem
The Best Burger shop employs 4 people. The 2 cooks work 35 hours each per week for $\$ 20$ an hour. The 2 waiters work 30 hours each week for $\$ 15$ an hour.

How much altogether does Best Burgers pay its 4 employees each week?

Challenge

1. How much more money does a cook earn than a waiter per week?
2. Jane, one of the cooks, is saving to buy a car valued at $\$ 4500$. She has already saved $\$ 750$. How much more money does she need? Jane plans to save $\$ 200$ per week. How long will it take her to save the rest of the money needed to buy the car?

Explain how you worked out your answers.

The Problem
Create a design for the playing area
of a new school. Include the following

- 50% soccer/cricket pitch
- 25% netball/basketball courts
- 15% gym
- 10% playground
Express these percentages as
fractions and decimals.

Challenge

1. How might your design change if $1 / 4$ of 1. How might your design change if $1 / 4$ of
the netball/basketball courts became a
 include the seating area. How do you know you are right?

What fraction of the whole playing area would be used as a seating area? How did you work this out?
2. During the week, Rec - year 2
students use the soccer/cricket pitch for $1 / 10$ of the time. Year 3-5 students use it for $2 / 5$ of the time, and the remainder of the time is for the year 6-7 students. What fraction of time is the soccer/cricket pitch used by year 6-7 students? How did you work this out?

[^0]Chocolate Brownies

spuә!

How much sugar will she need?

What if Marlene wanted to make 36 brownies for morning
tea so her friends could each take some home with them?
How much of each ingredient would be needed?

[^0]: Can you suggest other fractions for

 Explain your thinking.

