Year 7			Western Adelaide Region - Maths Assessment Tasks Map (Draft - November 2013)								oficiency Strands
Aims	The Australian Curriculum Mathematics aims to ensure that students......are confident, creative users and communicators of mathematics, able to investigate, represent and interpret situations in their personal and work lives and as active citizens; develop an increasingly sophisticated understanding of mathematical concepts and fluency with processes, and are able to pose and solve problems and reason in Number and Algebra, Measurement and Geometry, and Statistics and Probability; recognise connections between the areas of mathematics and other disciplines and appreciate mathematics as an accessible and enjoyable discipline to study.										Understanding Fluency Problem Solving Reasoning
Content Strands	Number \& Algebra										
Sub Strands	Number \& Place Value		Real Numbers					Money and Financial Mathematics	Patterns \& Algebra	Linear and Non-linear Relationships	
	Additive to M Think	ultiplicative ing	Partitioning					-Best buys can be determined by comparing the costs of items using metric units or by comparing monetary values	-Understanding arithmetic laws leads to the understanding of algebra -Patterns can be represented in many ways and can consist of multiple operations and inverse operations	-Concrete models will assist in the calculation and understanding of linear equations -There can be patterns that exist when plotting points of integer values	
Big Idea / Concept/ Key Understanding	-Numbers have special properties that can be used to solve problems (e.g. factor, multiple, prime) -Arithmetic laws are powerful ways of describing and simplifying calculations -An integer is any whole number that is positive, negative or zero		-The denominator of a fraction names the part. The numerator tells their number -- how many -A unit fraction is a fraction whose numerator is 1 (e.g. $1 / 3$: in $2 / 3$ the unit is $1 / 3$ and we have 2 of them) -Representations of quantities can be expressed as decimals, fractions and percentage -The decimal numeral system has 10 as the base. A decimal is a tenth part (e.g. 0.6 is 6 tenths of a part, the part being 1 whole) -A decimal fraction is a fraction whose denominator is a power of ten (e.g. 6 tenths, 6 hundredths, 6 thousandths, etc.)								
Australian Curriculum Content Descriptor	Investigate index notation and represent whole numbers as products of powers of prime numbers Compare, order, add and subtract integers Investigate and use square roots of perfect square numbers	Apply the associative, commutative and distributive laws to aid mental and written computation	Compare fractions using equivalence Locate and represent positive and negative fractions and mixed numbers on a number line	Solve problems involving addition and subtraction of fractions, including those with unrelated denominators	Multiply and divide fractions and decimals using efficient written strategies and digital technologies Round decimals to a specified number of decimal places	Express one quantity as a fraction of another, with and without the use of digital technologies Find percentages of quantities and express one quantity as a percentage of another, with and without digital technologies Connect fractions, decimals and percentages and carry out simple conversions	Recognise and solve problems involving simple ratios	Investigate and calculate 'best buys', with and without digital technologies	Introduce the concept of variables as a way of representing numbers using letters Create algebraic expressions and evaluate them by substituting a given value for each variable Extend and apply the laws and properties of arithmetic to algebraic terms and expressions	Given coordinates, plot points on the Cartesian plane, and find coordinates for a given point	Solve simple linear equations Investigate, interpret and analyse graphs from authentic data
Achievement Standard	Students solve problems involving the comparison, addition and subtraction of integers Students make the connections between whole numbers and index notation and the relationship between perfect squares and square roots		Students use fractions, decimals and percentages, and their equivalences	Students solve problems involving percentages and all four operations with fractions and decimals		Students express one quantity as a fraction or percentage of another		Students compare the cost of items to make financial decisions.	Students represent numbers using variables Students connect the laws and properties for numbers to algebra	Students assign ordered pairs to given points on the Cartesian plane	Students interpret simple linear representations and model authentic information Students solve simple linear equations and evaluate algebraic expressions after numerical substitution
Summative Assessment Task	7. 'Help!' Number P	ster perties	7.2 Fractions, Decimals \& Percentages Sleep Requirements						7.3 Patterns \& Algebra	Where	7.4 My iPhone?

Developed by Karly Hefferan, Chris Miethke, Susan Glaister, Karen Knox, Lauren Fletcher-Rees \& Dawn Dyer

7.1 - Number \& Place Value
 Compare, order, add subtract integers;
 and square roots

Western Adelaide Region
Mathematics Performance Assessment Tasks (Updated: November 2013)

Year 7

Big Idea(s)

-Numbers have special properties that can be used to solve problems (e.g. factor, multiple, prime). -Arithmetic laws are powerful ways of describing and simplifying calculations.
-An integer is any whole number that is positive, negative or zero.

Australian Curriculum Content Descriptor

Investigate index notation and represent whole numbers as products of powers of prime numbers.
Compare, order, add and subtract integers. Investigate and use square roots of perfect square numbers.

Achievement Standard

By the end of Year 7, students solve problems involving the comparison, addition and subtraction of integers. They make the connections between whole numbers and index notation and the relationship between perfect squares and square roots.

Summative Assessment

Does the assessment task indicate how well students understand and can apply their learning? (how well = extent, depth and sophistication of thinking - informs A-E grading)

Option 1: 'Help!' Poster

Entry Level

Mr. L's class were learning about number properties but they were having trouble understanding all of the different terms. They kept getting all of their examples mixed up and no one could answer any of the task questions correctly. One of the students said that he had a good idea and that they could make 'Help' posters to use when they were working on the tasks. Mr. L thought that was a great idea and they all made their own 'Help!' posters. What do you think the posters might have looked like? *Brainstorm the terms to be used on the posters- this will vary depending on what content has been covered so far. Encourage students to access the information using ICT resources, however emphasise the examples must be their own.
Challenge Level
Students are asked to choose 1 example and write a real-world word problem.

Option 2: Number Properties (see attachment 7.1)

Entry Level

Students complete the Number Properties table of information and questions (attachment 7.1). The task may require some explanation and a few examples prior to students completing the task. The aim is for students to recognise and categorise 4 given numbers in relation to their properties and explain their choices.

Challenge Level

Students complete the 3 question boxes at the bottom of the page.
Questioning - "What do you understand the term factor/multiple/square/prime/etc. to mean?" "Could the numbers be placed in more than one category? Why?" "Why did you choose ... numbers for your own examples?" "Explain how you calculated the temperature ranges?" "Explain how you solved...?" "Could you have used a different example for...?"

Organisation

Teacher - A3 paper for student posters; copies of attachment 7.1
Students - A3 paper; attachment 7.1; pencils/pens/textas

Related Mathematical Proficiencies

- Understanding includes describing patterns in uses of indices with whole numbers
- Fluency includes calculating accurately integers
- Reasoning includes applying number laws to calculations

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by providing a range of examples to describe number properties
- Show understanding by applying their knowledge to a number properties task requiring students to categorise 4 given numbers.

Advanced - Students demonstrate an understanding of number properties and make strong connections between them. They provide explicit and detailed examples on their 'Help!' poster and write a real world word problem. They successfully complete the number properties table and associated questions and explain all of their choices using logical and mathematical reasoning.

Competent -Students demonstrate an understanding of number properties and make connections between them. They choose more simple terms on their 'Help!' board and provide an example for each of the terms used. They complete the number properties task with understanding and may require some clarification. They explain their choices using mostly mathematical terms.

Developing-Students demonstrate some/little understanding of number properties. They create a 'Help!' poster using only one or two simple terms and examples. They experience difficulty with the number properties task and require additional scaffolding. They are unable to explain their choices using mathematical reasoning

7.2 - Real Numbers

Western Adelaide Region
Mathematics Performance Assessment Tasks (Upodeted: November 2013)

Related Mathematical Proficiencies

- Understanding includes recognising equivalences between fractions, decimals, percentages and ratios - Fluency includes representing fractions in various ways

Big Idea(s)

-Representations of quantities can be expressed as decimals, fractions and percentage.
-The decimal numeral system has 10 as the base. A decimal is a tenth part (e.g. 0.6 is 6 tenths of a part, the part being 1 whole). -A decimal fraction is a fraction whose denominator is a power of ten (e.g. 6 tenths, 6 hundredths, 6 thousandths, etc.).

Australian Curriculum Content Descriptor

 Compare fractions using equivielence.Locate and represent positive and negative fractions and mixed numbers on a number line.
Solve problems involving addition and subtraction of fractions, including those with unrelated denominators.
Multiply and divide fractions and decimals using efficient written strategies and digital technologies.

Achievement Standard

By the end of Year 7 , students use fractions, decimals and percentages, and their equivalences. They solve problems involving percentages and all four operations with fractions and decimals.

Feedback

How will I provide feedback to students? Do I use ongoing Formative Assessment to inform the
teaching \& learning cycle? Do I provide learning experiences that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before administrating the assessment task.

Developing:

Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Mental routines with fractions involving equivalence and the 4 basic processes.
- Mental routines converting \% to decimals and fractions
- Develop automaticity with the landmark \% fractions and decimals- $10 \%, 20 \%, 50 \%, 75 \%$,
- Explore and develop efficient strategies for expressing one quantity as a fraction of another
- Develop efficient strategies for calculating \% of quantities, and for expressing one quantity as a \% of another
- Develop efficient strategies for multiplication and division involving fractions and decimals
- Explore the relationship between \%, fractions and decimals
- Using a number line to locate \%, fractions and decimals
- A range of Problem solving situations involving \% and all 4 operations with fractions and decimal
- Locating and highlighting the relevant information and facts in worded problems

Summative Assessment

Does the assessment task indicate how well students understand and can apply their learning? (how well = extent, depth and sophistication of thinking - informs A-E grading)

Task 1: Fractions, Decimals \& Percentages (see attachment 7.2A) Entry Level
Students complete the 4 quadrants of the thinkboard (The Answer is 80%) with at least one example in each quadrant to demonstrate their knowledge of fractions, decimals and percentages. (Please note: you may wish to choose a different percentage than 80%, however please ensure this is in a new context and not familiar, i.e. $10 \%, 20 \%, 50 \%$)

Challenge Level
Students draw and complete their own choice thinkboard (The Answer is...) with multiple answers including reducing a fraction to its lowest terms.

Task 2: Sleep Requirements (see attachment 7.2B)

Entry Level

Students are given attachment 7.2B to complete. Students are required to hand up a recording page to show their thinking and calculations as part of the assessment. Some students at this level may require additional support such as a conversion information page/chart. You might ask particular students to only complete part of the table if this is too challenging or you might complete some of the boxes for them to give additional information.

Challenge Level

Draw a diagram/graph that best represents the information contained in the table.
Questioning - "What strategies did/could you use to convert between percentages, fractions and decimals?" "What other facts do you need to know?" "When might a calculator be useful in your working out?" "What do you find easiest to understand percentage, fractions or decimals? Why?" "I working out?" "What do you find easiest to understand percentage, fractions or decimals? Why?" "Is
there anything that surprises you about the sleep information?" "What graphs or diagrams do you know about that could represent this type of information?" "Where have you seen a similar table or chart before?"

Organisation

Teacher - copies of attachments 7.2A \& 7.2B; paper; access to calculators Students - attachments 7.2A \& 7.2B; paper for recording; pencils

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by using efficient strategies to solve a given problem and by converting between fractions, decimals and percentages with accuracy
- Show understanding by explaining strategies used and applying their knowledge to solve more complex questions.

Advanced -Students demonstrate understanding by simplifying fractions and using a variety of representations and examples on their thinkboard. They produce sophisticated real life examples, word problems, pictures and/or diagrams. They create their own thinkboard using a more challenging percentage (e.g. $65 \%, 150 \%$). Students complete the Sleep Requirements table with accuracy and demonstrate efficient and fluent strategies on their recording page. They answer each of the task questions and complete the challenge question by drawing/creating a diagram or graph to represent the data. They explain their graph or diagram using mathematical reasoning and understanding of data sets.
Competent - Students demonstrate understanding on their thinkboard by recording appropriate examples for 80%. They produce a real life example, word problem, picture and/or diagram. They attempt to create their own thinkboard using a simple landmark number (e.g. $25 \%, 75 \%, 50 \%, 100 \%$) as their percentage. Students complete the Sleep Requirements table for the simple fractions (e.g. newborns, pre-schoolers, adults) and attempt the task questions. They demonstrate efficient strategies for their calculations on their recording page.
Developing - Students demonstrate some/little understanding of fractions, decimals and percentage and the relationship between them. The fractions, pictures and diagrams may not be accurate representations of 80%. Students require additional scaffolding to attempt the Sleep Requirements task. They provide limited responses to task questions.

7.3 - Patterns \& Algebra

Represent numbers using variables; Connect laws and properties of numbers

Big Idea(s)

-Understanding arithmetic laws leads to the understanding of algebra.
-Patterns can be represented in many ways and can consist of multiple operations and inverse operations.

Western Adelaide Region Mathematics Performance Assessment Tasks (Updated: November 2013)

Year 7

Prior Learning Experiences

Do I use ongoing Formative Assessment to inform the teaching \& learning cycle? Do I provide learning experiences that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before administrating the assessment task.

Developing:

Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Practise patterning using a variety of materials
- Explore complex patterns with more than one variable
- Practise with equivalent expressions, exploring "equals"
- Recording equivalent expressions where the answer is not just after the $=\operatorname{sign}(e . g .7+3=8+$?)
- Revise number properties \& revisit efficient strategies for mental computation
- Problem solving situations involving multi-step and combinations of the four operations, including exploring how to record solutions as a step by step process
- Problem solving situations where there are unknown quantities or variables within quantities (if X is ..., then Y could be ... or...). This could include student generated 'guess my rule' games/activities.
- Substitute pronumerals and symbols for numbers, practice explaining thinking about how to find values for pronumerals
- Create their own algebraic expressions and substituting values for pronumerals
- Explore ratio tables as a way of problem solving (search Professor Shelley Dole, Proportional Reasoning for ideas) such as completing tables according to rules and expressions provided (to find d, add 4 to p; s is equal to 10 times $f ; n=m+6, \quad g=2 k, h=3 r-1$)
- Explore order of operations with and without digital technologies
- Explore BEDMAS, including using bracket in an Excel spreadsheet. BEDMAS-1. Calculations must be done from left to right. 2. Calculations in brackets (parenthesis) are done first. When you have more than one set of brackets, do the inner brackets first. 3. Exponents/Orders (or radicals) must be done next. 4. Multiply and divide in the order the operations occur. 5. Add and subtract in the order the operations occur.
- Use interactive software programs such as, Natural Maths- The Card Game \& Maths300 (inexpensive for site licences)
- Create a word wall or 'help sheets' to display in the classroom

Australian Curriculum Content Descriptor

Introduce the concept of variables as a way of representing numbers using letters.
Create algebraic expressions and evaluate them by substituting a given value for each variable.
Extend and apply the laws and properties of arithmetic to algebraic terms and expressions.

Achievement Standard

By the end of Year 7, students represent numbers using variables. They connect the laws and properties for numbers to algebra.

Related Mathematical Proficiencies

- Understanding includes connecting the laws and properties of numbers in algebraic terms and expressions
- Reasoning includes applying the number laws to calculations

Feedback

How will I provide
feedback to
students?
Does the assessment task indicate how well students understand and can apply their learning? (how well = extent, depth and sophistication of thinking - informs A-E grading)

Patterns and Algebra (see attachment 7.3)

(Adapted from Pearson Mathematics Book for Year 7 Students)

Entry Level

Students use the rules given to insert the missing numbers into the tables, using the following examples:

- To find y, subtract 4 from x
- n is equal to m multiplied by 3
- To find d, add 10 to c , then multiply by 5

Conferences 1:1
with peers \&
teacher

Learning log:
Student
identifies areas
for focus

SNW (S-
strengths, N -
needing improvement, W- where to
next)

- $y=2 x+4$

They write the rules for each example as an algebraic expression/equation. Students attempt to write their own algebraic equation and provide the values for it (question 4).

Challenge Level

Mr Lang posed the following problem to his year 7 class (question 5):

- Substitute $x=5$ into $y=8 x+3$
- Each student provided their working out.

Kym's answer was $\mathrm{y}=88 \quad$ Jordan's answer was $\mathrm{y}=43$
Does either have the correct answer? Explain your choice.
How would you explain to another student how to work this out?
Write another problem similar to this, calculate the answer and explain your process in creating the problem.

Questioning - "What other pronumerals could you use?" "Does 'y' always have the same value?" "Can you think of other algebraic expressions?" "When might you use algebra in everyday life?" "What did/do you find challenging? Easy? Why?"

Organisation

Teacher - copies of attachment 7.3
Students - attachment 7.3 ; pen/pencil

Evidence

What evidence am I looking for that demonstrates the student has got it?

Students will:

- Demonstrate knowledge by correctly identifying the missing numbers by inserting a range of different given rules into number sentences.
- Show understanding by applying knowledge of substitution of pronumerals to solve a problem solving question and by explaining their choices.

Advanced - Students demonstrate understanding by correctly completing questions $1-4$. They use their knowledge of pronumerals to complete a range of number sentences using substitution. They correctly identify the rule used in each question. They choose the correct answer from the 2 examples given in the problem solving task and clearly explain their choice using appropriate mathematical reasoning, such as explaining that $8 x$ means 8 multipied by x . They write their own problem using substitution and correct algebraic expressions. They provide supporting examples and appropriate explanations.

Competent-Students demonstrate an understanding of algebra and the use of pronumerals. They connect the laws and properties for numbers with algebra by completing the tables for questions $1-4$, inserting the values for the pronumerals. They write the rule for questions $1-4$ using correct algebraic expressions. The attempt to solve the problem solving question with basic understanding.

Developing - Students demonstrate someliitle understanding of the use of pronumerals and require additional support to connect the laws and properties for numbers to algebra. They attempt to solve questions $1-4$ with someliitle success.
7.4-Linear \& Non-Linear
Relationships Assign given points on a
Cartesian plane: Solve simple linear equations

Big Idea(s)

-Concrete models will assist in the calculation and understanding of linear equations. -There can be patterns that exist when plotting points of integer values.

Achievement Standard By the end of Year 7 , students assign ordered pairs to given points on the Cartesian plane. They interpret simple linear representations and model authentic information. They solve simple linear equations and evaluate algebraic expressions after numerical substitution.

Prior Learning Experiences

Do I use ongoing Formative Assessment to inform the teaching \& learning cycle? Do I provide learning experiences that enable students to build on their knowledge?

It is important that students have had experiences with the learning opportunities below before administrating the assessment task.

Developing:

Understanding Fluency Problem Solving Reasoning

Through experiences with:

- Locating points on a Cartesian plane
- Identifying coordinates on a Cartesian plane
- Reading and interrereting maps
- Ploting journeys on maps using grid coordinates
- Practise naming locations using fractions / decimals when they are between whole number coordinates on a Cartesian plane. e.g. (6.5, 9)
- Practise using street directories
- Simple linear equations using x and y
- Plotting simple linear equations on a Cartesian plane e.g. $(x=y),(y=x+2),(y=2 x)$
- Using grid paper to construct x and y axis
- Playing games involving coordinates (e.g. Battleships)
- Practise substituting values for x or y in linear equations
- Math300 tasks ((Education Sevices, Victoria)

Australian Curriculum Content Descriptor Given coordinates, plot points on the Cartesian plane, and find coordinates for a given point. Solve simple linear equations.
Investigate, interpret and analyse graphs from authentic data.

Related Mathematical Proficiencies

- Understanding includes plotting points on a Cartesian plane

Feedback
How will I provide feedback to students?

Teacher observations

Conferences 1:1
with peers \&
teacher

Learning log:
Student
identifies areas
for focus

SNW (Sstrengths, N needing improvement, W- where to next)

Summative Assessment
Does the assessment task indicate how well students understand and can apply their learning? how well = extent, depth and sophistication of thinking - informs $A-E$ grading)

Where's My iPhone? (see attachment 7.4)

Students use a grid/Cartesian plane to locate points on a map, use ordered pairs of coordinates to describe locations and interpret and record linear equations.

Entry Level

Students use and interpret coordinates to locate and describe locations. They interpret information from a key. They locate points on a grid described by a linear equation.

Challenge Level

Students successfully complete the Entry level activities. They plot a course using ordered pairs of coordinates. They record information on a key. Students describe a course using coordinates. They use information to write a linear equation to describe possible locations.

Questioning - "Which axis is listed first in a pair of coordinates?", "What are the labels of the 2 axis?" "What other linear equations produce straight lines on a Cartesian plane?" "Where do you find Cartesian planes and grids in real life?"

Organisation

Teacher - provide Attachment 7.4 (2 pages) to each student Students - Attachment 7.4, pencil, pen, ruler, marker pens

Evidence

What evidence am I looking for that demonstrates the student has got $i t ?$

Students will:

- Demonstrate knowledge by using coordinates to plot and locate points on a Cartesian Plane
- Show understanding by interpreting and describing pathways on a Cartesian Plane using linear equations
- Demonstrate Reasoning by developing Treasure Hunt course and checkpoints using coordinates.

Advanced -Students demonstrate understanding by accurately locating and describing locations on the map. They interpret and write linear equations to describe pathways on the map. They include several possibilities that satisfy the linear equation. They describe areas defined by coordinates. Students develop a viable, logical treasure hunt course that includes checkpoints accurately defined by sets of coordinates.

Competent - Students demonstrate an understanding of grids, Cartesian Planes and coordinates by locating landmarks on the map. They connect sets of coordinates to define a pathway. Students locate one or more points on the map defined by a linear equation. They include some possibilities that satisfy the linear equation. They attempt to write their own linear equation to describe a pathway. Students describe a basic treasure hunt course using coordinates and accurately include at least one checkpoint.

Developing - Students demonstrate somelititle understanding of grids, Cartesian Planes and coordinates. They locate and place some landmarks and regions described by coordinates. They identify one, or a few, possibilities that satisfy the linear equation. They require scaffolding to write their own linear equation.

Attachment 7.1 Number Properties

All numbers have special properties. Each of the numbers below can be described by more than one of the number properties. Place these numbers next to their properties.
The number " 3 " can be placed in one or more of the categories below.
The number " -8 " can be placed in one or more of the categories below.
The number " 16 " can be placed in one or more of the categories below.
The number " 225 " can be placed in one or more of the categories below.
Choose your own numbers to place in the "your own examples" column. Explain your choices.

NUMBER PROPERTIES	$3,16, \mathbf{8}, \mathbf{2 2 5}$	YOUR OWN EXAMPLES	EXPLAIN YOUR CHOICES
FACTORS OF 48			
MULTIPLES OF 3			
PRIME			
COMPOSITE			
POSITIVE			
NEGATIVE			
SQUARE NUMBERS			
SQUARE ROOTS			

Order the numbers $225,3,16,-8$ from smallest to largest by placing them on an open number line.
Is there one number that can be placed in all of these categories? Explain your answer.

What are the prime factors of-
25

24

225

Kym and Jade's teacher presented the class with the following problem-
$6+4 \times 3-20$
Kym said the answer was -2
Jade said the answer was 10
Is either correct? Explain your thinking.

Which of these locations has the larger
temperature range?
3. Canberra Low minus $10.0^{\circ} \mathrm{C}$

High $42.2^{\circ} \mathrm{C}$
4. Mt Kosciusko Low minus $23^{\circ} \mathrm{C}$ High $33^{\circ} \mathrm{C}$
Explain your thinking.

Source www.bom.sa.gov.au

CHALLENGE: CREATE YOUR OWN THINKBOARD USING A DIFFERENT ANSWER

The National Sleep Foundation (USA) produced the following table to indicate ideal hours of sleep required at different ages. Use this information to complete the table and tasks below. (Information from http://kidshealth.org)

THE TABLE OF SLEEP REQUIREMENTS PER 24 HOURS					
Age	SLEEP NEEDS	Fraction/s		PERCENTAGES	DECIMALS
Newborns	? _ hours			75\%	
Infants	15 hours				
Toddlers	14 hours				
Pre-schoolers	? __hours	12/24	1/2		
School-age children	11 hours				
Teens	9.5 hours				
Adults	8 hours				0.33

TASKS

1. Show all your working out for the answers in the table on your working page.
2. Which age was the most challenging to work out? Would access to a calculator make this easier? Why?
3. Which of Fractions, Percentages or Decimals should the National Sleep Foundation use to share this information with families? Explain your thinking?
4. What is the total for all the percentages across these ages? Why do you think the answer is more than 100% ?
5. Estimate the percentage of time that you spend each school day engaged in the following activities:-
a) Sleeping
b) At school
c) Recreation
d) Eating
e) Other

Challenge Task: Draw a diagram/graph that best represents this information.

Attachment 7.4 Where's My iPhone?

1. Sammy and friends spent the day in the city. They met at the cinema in Rundle Mall. What coordinates describe the location of the cinema?
2. From there they walked to coordinates $(7,4)$. Which 2 streets meet near this point?
3. They had lunch in Victoria Square. What coordinates best describe the part of Victoria Square where Franklin Street, Flinders Street and King William Streets meet?
4. The group then caught the bus along King William Road to the River Torrens. They walked to the kiosk for ice-cream. What coordinates describe the location of the kiosk?
5. Sammy then went shopping at coordinates $(7.5,5)$. Which 4 streets surround this store When Sammy reached the ATM on Pirie Street, he realised he had lost his iPhone. He decided to map out a pathway to retrace his movements.

He started at $(6,3)$ then walked to $(3,3)$. He continued to $(4,4.5)$, then $(7,5)$ and was on his way to $(4,8)$ when he saw his phone under a bench at $(4.5,7)$.

Use a pen to trace Sammy's search for the iPhone.

Attachment 7.4 Where's My iPhone?

6. Draw a circle where Sammy found his iPhone.
 7. Name the area where the iPhone was located.

Sammy then caught the nearest bus home.
 \section*{What coordinates describe the location of the nearest bus stop?}

coordinates that could describe the location of these parklands.

9. His friends walked through the Parklands near the University. Name any two sets of

the map.
$\stackrel{-1}{7}$
10. Record their symbols and coordinates in the KEY.
11. Sammy's friend Gerry was running late. He sent him an SMS.

It said, "I am walking along $x+y=9$.
How could you represent this on the map?
13. Name 2 buildings where Gerry could meet the friends if they travelled along this path.
14) I am travelling on $x=y(o r y=x) \quad 15)$ answers on map and as a written description; will vary

