Ideas/ Topic focus	Strand/ Sub Strand	Achievement Standard	Content Descriptor(s)		Suggested Teaching	ning Experiences	Assessment Focus/ Task	Time Frame	Resources	Links to other learning areas
-Numbers have special properties that can be used to solve problems (e.g. factor, multiple, prime) -If a number is divisible by a composite number then it is also divisible by the prime factors of that number (e.g. 216 is divisible by 8 because the number represented by the last 3 digits is divisible by 8 , and therefore is also divisible by 2 and 4) -An integer is any whole number that is positive, negative or zero	Strand: Algebra Sub-strand: Place Value	By the end of Year 6 students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts They solve problems involving all four operations with whole numbers	Identify and describe properties of prime, composite, square and triangular numbers Investigate everyday situations that use integers Locate and represent these numbers on a number line Select and apply efficient mental and written strategies and appropriate digital technologies to solve problems involving all four operations with whole numbers	- Place value to the millions \& decimal place value - Efficient strategies for problem solving using the four operations - Recall of basic number facts - Exploring multiplication patterns - Exploring number facts using arrays \& regions - Factors and multiples	- Use a 100 s chart to explore prope composite, square, triangular) thro - Develop the vocabulary associate - Locate and order integers (positive - Place value of larger numbers, inc open number lines - Create posters or 'help sheets' to examples (e.g. ordering integers commutativity) - Explore commutativity and genera "4 threes are 12, I know that 2 thre - Explore fact family relationships \& threes are 12, 3 fours are 12, 12 divid - Arrays and regions games, such Professor Dianne Siemon) - Explore, create and deconstruct fa factors. Use arrays models and fa - Mental Routines (Natural Maths) develop fluency and automaticity exploring the four operations. Also students who are more competent \& provide intervention. - Problematised situations (Natural and multi-step problems with a foc - Revise efficient strategies for com strategies such as chunking, open balance \& compensate, round \& a Maths -Middle Years Mental Com - Use calculators to assist with prob - Use thinkboards/ whiteboards for - Find the missing number - such as answer is 24 , what might the num	numbers (integer, prime, ntal routines (Natural Maths) umber properties negative) on a number line ordering and sequencing on number properties and to give mber line; arrays to model using arrays and regions (e.g. 6 and double 6 is $12^{\prime \prime}$) tativity using arrays (e.g. 4 by 3 is 4 , 12 divided by 4 is 3) lication Toss (George Booker, es to identify multiples and es to assist students. ore factors and multiples; to ecall of number facts and when eed drills, personal bests for is time to assist other students involving the four operations sing estimation as a strategy for the 4 operations through lines, partial algorithms, andmark numbers (Natural) ving g n a number is multiplied by x the ? What strategies did you use?	Diagnostic Assessment Big Ideas in Number Test Multiplicative Thinking (Professor Dianne Siemon) Formative Assessment Natural Maths Problematised Situations Work samples involving the use of number properties \& identified strategies Student generated glossary or help sheets Doug Clarke - 'Rich Assessment Tasks' (e.g. Personalised Number Plates, Helping Bert Divide, *Multi Lotto - *Year 7 task, could be adapted to suit Year 6) Maths300 tasks (Education Services, Victoria) Summative Assessment Tasks (Western Adelaide Region) -6.1: Best Burgers	Term 1 (5 weeks) Ongoing throughout the year	- Counterssingle coloured (for arrays models) - Number cards $0-9$ or 0-6, 09, 1-10 dice - Flashcards/ Number cards (including missing addend) - 1-100, 0-99 number charts - Thinkboards - Mental routine boards - Natural Maths Computation strategies posters - Calculators - Frieze tape (for open number lines)	- Literacy creating narrated problematised situations; maths glossary of terms
-A pattern requires an element of repetition that can be described and generalised with a pattern rule -Patterns can be represented in many ways and can consist of multiple operations and inverse operations	Strand: Algebra Sub-strand: Algebra	By the end of Year 6, students write correct number sentences using brackets and order of operations	Explore the use of brackets and order of operations to write number sentences	- Properties of numbers - Integers - Problem solving involving the four operations - Number lines - Factors \& Multiples	- Explore number patterns \& rev computation - Problem solving situations \& in and combinations of the four op - Explore how to use a calculato - Practise recording number sen (over a number of lines) to sho - Explore formulas in Excel usin BEDMAS 1. Calculations must be done from 2. Calculations in brackets (paren have more than one set of bracke 3. Exponents/Orders (or radicals) 4. Multiply and divide in the order 5. Add and subtract in the order the	ficient strategies for mental gations involving multi-step ions ssist with order of operations es as multi-step solutions rking out \& strategies used ckets to right. s) are done first. When you o the inner brackets first. be done next. perations occur. erations occur.	Formative Assessment Natural Maths Problematised Situations Work samples \& anecdotal notes Summative Assessment Tasks (Western Adelaide Region) -6.4: Target Number	Term 1 (3 weeks) Ongoing throughout the year	- Thinkboards/ whiteboards - Mental routine board - Calculators - Microsoft Excel - Maths300 software - The Card GameNatural Maths software	- Literacy creating narrated problematised situations; maths glossary of terms
Beginning of Term 2: Revise any content requiring additional teaching and development, then begin a new unit on Fractions \& Decimals or Patterns \& Algebra. (see the Western Adelaide Region Year 6 Summative Assessment Tasks for ideas)					Future Learning Consideration	What were the students able to do and show? What are the areas needing further development? What misconceptions did students have? Have these been adequately addressed? What are the next big ideas? What are the learning goals of my students? What assessment strategies will show me what students know?				

